您当前的位置:网站首页>Redis>redis中pipeline详解 找Redis教程就上ki4.cc (>^ω^<),redis

redis中pipeline详解 找Redis教程就上ki4.cc (>^ω^<),redis

2020年05月28日 投稿作者: 围观人数:36

Redis持久化完整版本 找Redis教程就上ki4.cc (>^ω^<)

持久化的简介RDBAOFRDB与AOF的区别持久化应用场景对于持久化这个功能点,其实很简单没有那么复杂演示环境centos7.0redis4.0redis存放目录:/usr/local/redisredis.conf存放目录:/usr/local/redis/data1. 持久化简介redis的所有数据都是保存在内存中,redis崩掉数据会丢失。redis持久化就是把数据保存在磁盘上。利用永久性存...

一、pipeline出现的背景:

redis执行一条命令有四个过程:发送命令、命令排队、命令执行、返回结果;

这个过程称为Round trip time(简称RTT, 往返时间),mget mset有效节约了RTT,但大部分命令(如hgetall,并没有mhgetall)不支持批量操作,需要消耗N次RTT ,这个时候需要pipeline来解决这个问题。

二、pepeline的性能

1、未使用pipeline执行N条命令

2、使用了pipeline执行N条命令

3、两者性能对比

小结:这是一组统计数据出来的数据,使用Pipeline执行速度比逐条执行要快,特别是客户端与服务端的网络延迟越大,性能体能越明显。

下面贴出测试代码分析两者的性能差异:

	@Test
	public void pipeCompare() {
		Jedis redis = new Jedis("192.168.1.111", 6379);
		redis.auth("12345678");//授权密码 对应redis.conf的requirepass密码
		Map<String, String> data = new HashMap<String, String>();
		redis.select(8);//使用第8个库
		redis.flushDB();//清空第8个库所有数据
		// hmset
		long start = System.currentTimeMillis();
		// 直接hmset
		for (int i = 0; i < 10000; i++) {
			data.clear();  //清空map
			data.put("k_" + i, "v_" + i);
			redis.hmset("key_" + i, data); //循环执行10000条数据插入redis
		}
		long end = System.currentTimeMillis();
		System.out.println("    共插入:[" + redis.dbSize() + "]条 .. ");
		System.out.println("1,未使用PIPE批量设值耗时" + (end - start) / 1000 + "秒..");
		redis.select(8);
		redis.flushDB();
		// 使用pipeline hmset
		Pipeline pipe = redis.pipelined();
		start = System.currentTimeMillis();
		//
		for (int i = 0; i < 10000; i++) {
			data.clear();
			data.put("k_" + i, "v_" + i);
			pipe.hmset("key_" + i, data); //将值封装到PIPE对象,此时并未执行,还停留在客户端
		}
		pipe.sync(); //将封装后的PIPE一次性发给redis
		end = System.currentTimeMillis();
		System.out.println("    PIPE共插入:[" + redis.dbSize() + "]条 .. ");
		System.out.println("2,使用PIPE批量设值耗时" + (end - start) / 1000 + "秒 ..");
//--------------------------------------------------------------------------------------------------
		// hmget
		Set<String> keys = redis.keys("key_*"); //将上面设值所有结果键查询出来
		// 直接使用Jedis hgetall
		start = System.currentTimeMillis();
		Map<String, Map<String, String>> result = new HashMap<String, Map<String, String>>();
		for (String key : keys) {
			//此处keys根据以上的设值结果,共有10000个,循环10000次
			result.put(key, redis.hgetAll(key)); //使用redis对象根据键值去取值,将结果放入result对象
		}
		end = System.currentTimeMillis();
		System.out.println("    共取值:[" + redis.dbSize() + "]条 .. ");
		System.out.println("3,未使用PIPE批量取值耗时 " + (end - start) / 1000 + "秒 ..");

		// 使用pipeline hgetall
		result.clear();
		start = System.currentTimeMillis();
		for (String key : keys) {
			pipe.hgetAll(key); //使用PIPE封装需要取值的key,此时还停留在客户端,并未真正执行查询请求
		}
		pipe.sync();  //提交到redis进行查询
		
		end = System.currentTimeMillis();
		System.out.println("    PIPE共取值:[" + redis.dbSize() + "]条 .. ");
		System.out.println("4,使用PIPE批量取值耗时" + (end - start) / 1000 + "秒 ..");

		redis.disconnect();
	}

三、原生批命令(mset, mget)与Pipeline对比

1、原生批命令是原子性,pipeline是非原子性

(原子性概念:一个事务是一个不可分割的最小工作单位,要么都成功要么都失败。原子操作是指你的一个业务逻辑必须是不可拆分的. 处理一件事情要么都成功,要么都失败,原子不可拆分)

2、原生批命令一命令多个key, 但pipeline支持多命令(存在事务),非原子性

3、原生批命令是服务端实现,而pipeline需要服务端与客户端共同完成

四、Pipeline正确使用方式

使用pipeline组装的命令个数不能太多,不然数据量过大,增加客户端的等待时间,还可能造成网络阻塞,可以将大量命令的拆分多个小的pipeline命令完成。

1、Jedis中的pipeline使用方式

大家知道redis提供了mset、mget方法,但没有提供mdel方法,如果想实现,可以借助pipeline实现。

2、Jedis中的pipeline使用步骤:

mac环境下redis扩展安装与使用介绍 找Redis教程就上ki4.cc (>^ω^<)

redis是一个高性能的key-value数据库。redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用。

  • 获取jedis对象(一般从连接池中获取)

  • 获取jedis对象的pipeline对象

  • 添加指令

  • 执行指令

测试类方法:

	 @Test
	public void testCommond() {
		// 工具类初始化
		JedisUtils jedis = new JedisUtils("192.168.1.111", 6379, "12345678");

		for (int i = 0; i < 100; i++) {
			// 设值
			jedis.set("n" + i, String.valueOf(i));
		}
		System.out.println("keys from redis return =======" + jedis.keys("*"));

	}

	// 使用pipeline批量删除
	 @Test
	public void testPipelineMdel() {
		// 工具类初始化
		JedisUtils jedis = new JedisUtils("192.168.1.111", 6379, "12345678");
		List<String> keys = new ArrayList<String>();
		for (int i = 0; i < 100; i++) {
			keys.add("n" + i);
		}
		jedis.mdel(keys);
		System.out.println("after mdel the redis return ---------" + jedis.keys("*"));
	}

JedisUtils下的mdel方法:

	/**
	 * 删除多个字符串key 并释放连接
	 * 
	 * @param keys*
	 * @return 成功返回value 失败返回null
	 */
	public boolean mdel(List<String> keys) {
		Jedis jedis = null;
		boolean flag = false;
		try {
			jedis = pool.getResource();//从连接借用Jedis对象
			Pipeline pipe = jedis.pipelined();//获取jedis对象的pipeline对象
			for(String key:keys){
				pipe.del(key); //将多个key放入pipe删除指令中
			}
			pipe.sync(); //执行命令,完全此时pipeline对象的远程调用 
			flag = true;
		} catch (Exception e) {
			pool.returnBrokenResource(jedis);
			e.printStackTrace();
		} finally {
			returnResource(pool, jedis);
		}
		return flag;
	}

使用pipeline提交所有操作并返回执行结果:

@Test
	public void testPipelineSyncAll() {
		// 工具类初始化
		Jedis jedis = new Jedis("192.168.1.111", 6379);
		jedis.auth("12345678");
		// 获取pipeline对象
		Pipeline pipe = jedis.pipelined();
		pipe.multi();
		pipe.set("name", "james"); // 调值
		pipe.incr("age");// 自增
		pipe.get("name");
		pipe.discard();
		// 将不同类型的操作命令合并提交,并将操作操作以list返回
		List<Object> list = pipe.syncAndReturnAll();

		for (Object obj : list) {
			// 将操作结果打印出来
			System.out.println(obj);
		}
		// 断开连接,释放资源
		jedis.disconnect();
	}

五、redis事务

pipeline是多条命令的组合,为了保证它的原子性,redis提供了简单的事务。

1、redis的简单事务,

一组需要一起执行的命令放到multi和exec两个命令之间,其中multi代表事务开始,exec代表事务结束。

2、停止事务discard

3、命令错误,语法不正确,导致事务不能正常结束

4、运行错误,语法正确,但类型错误,事务可以正常结束

5、watch命令:

使用watch后, multi失效,事务失效

WATCH的机制是:在事务EXEC命令执行时,Redis会检查被WATCH的key,只有被WATCH的key从WATCH起始时至今没有发生过变更,EXEC才会被执行。如果WATCH的key在WATCH命令到EXEC命令之间发生过变化,则EXEC命令会返回失败。

更多redis知识请关注redis入门教程栏目。

以上就是redis中pipeline详解的详细内容,更多请关注ki4导航其它相关文章!

一文搞定Redis五大数据类型及应用场景 找Redis教程就上ki4.cc (>^ω^<)

1.string类型1-1 string类型数据的基本操作添加 / 修改数据:set key value获取数据:get key删除数据:del key添加 / 修改多个数据:mset key value key1 value1获取多个数据:mget key key1追加信息到原始数据后边(不存在时则添加):append key value1-2 string类型 增减操作设置数值增加指定范围的值...

标签

版权说明
免责声明:本文文章内容由ki4导航网发布,但不代表本站的观点和立场,具体内容可自行甄别.